# Lab 4 Multi-variable linear regression import tensorflow as tf import numpy as np x_data = [[73., 80., 75.], [93., 88., 93.], [89., 91., 90.], [96., 98., 100.], [73., 66., 70.]] y_data = [[152.], [185.], [180.], [196.], [142.]] tf.model = tf.keras.Sequential() tf.model.add(tf.keras.layers.Dense(units=1, input_dim=3)) # input_dim=3 gives multi-variable regression tf.model.add(tf.keras.layers.Ac..